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Lee-Yang Zeros and Stokes Phenomenon 
in a Model with a Wetting Transition 
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We consider the statistical mechanics of a fluctuating string (ID solid-on-solid 
model) of N columns with a contact energy term displaying a critical wetting 
transition. For this model we derive a contour integral representation for the 
finite-size partition function. From this representation we derive a polynomial 
representation and obtain the Lee Yang zeros for N~< 100. Through the asymp- 
totic evaluation of the contour integral we evaluate the zeros for higher N. This 
asymptotic evaluation displays a Stokes phenomenon providing a different view- 
point of the mechanism by which a phase transition can arise, supplementing 
the picture of Lee and Yang. We also reproduce and extend somewhat the 
results of Smith for the finite-size scaling limit of the partition function. 

KEY WORDS: Partition function zeros; Stokes phenomenon; wetting 
transition. 

1. I N T R O D U C T I O N  

The t r ad i t iona l  L e e - Y a n g  (1'2) p ic ture  character izes  a phase  t rans i t ion  in the 

fol lowing way. The finite-size pa r t i t i on  funct ion has a represen ta t ion  as a 
po lynomia l  in the coupl ing  pa ramete r ,  which has degree p r o p o r t i o n a l  to 
the size of  the system. Singulari t ies  in the t h e r m o d y n a m i c  funct ions occur  
at  the (complex)  zeros of the po lynomia l  and  a phase  t rans i t ion  can arise 
if, in the t h e r m o d y n a m i c  limit,  the zeros condense  on to  lines which pinch 
the real  coupl ing  axis. This is a very appea l ing  pic ture  and  this p r o g r a m  
has been carr ied  out  on a number  of systems d isp lay ing  a phase  t rans i t ion  
(see, e.g., ref. 3). This work  has been p r imar i ly  of a numer ica l  na ture  
because  of the need to work  with finite-size pa r t i t ion  functions.  Analy t ic  
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techniques generally are only suited to the thermodynamic limit, the excep- 
tion being the Ising model. Here the temperature zeros are known (41 and 
the magnetic field zeros, while not calculated, are known to lie on the 
imaginary axis as a result of the Lee-Yang circle theorem. (1'5) 

There exists another viewpoint characterizing a phase transition. 
A phase transition is said to occur when the thermodynamic limit has dif- 
ferent analytic forms in different regions of the coupling parameter space. 
The notion of a parameter-dependent asymptotic limit appears commonly 
in the theory of special functions and is nothing but the Stokes 
phenomenon. (6) Here, typically, the limit Izl ~ oo is taken (being analogous 
to the N ~  oe limit) and the asymptotic form differs, depending on which 
region arg z (being analogous to the coupling parameter) lies. There are 
many many examples of this and they can be pursued in the literature. (7'8) 
Indeed, recently there has been further progress in the study of Stokes 
phenomena by Berry and others. (9) The traditional view of Stokes 
phenomena is that the asymptotic expansion changes discontinuously 
across the so-called Stokes line. As the original functions are analytic, this 
discontinuity is an artifact. This recent work has obtained asymptotic 
approximations which are uniform (i.e., smooth but rapidly changing) 
across the Stokes lines. 

While the Lee-Yang picture is very well known, the picture of a phase 
transition as a Stokes phenomenon is not so well known. In fact we only 
know of a few references in which it is in some way invoked. One is the 
paper of Itzykson et al. (1~ which in its introduction describes Lee-Yang 
zeros "as falling on Stokes lines which separate different asymptotic 
behaviours of the partition function in the thermodynamic limit." (There is 
a confusion of terminology in the literature as to what constitutes a Stokes 
line and what constitutes an anti-Stokes line. We shall follow the mathe- 
matical literature. With this interpretation Lee-Yang zeros fall on anti- 
Stokes lines.) There has also been some recent work on the calculation of 
the zeros of the finite-size scaling limit of the partition function (H'12) and 
here Stokes phenomena play a role. As the Stokes phenomenon charac- 
terization of a phase transition is very natural, we suspect that it is, in some 
sense, well known in the literature. As far as we are aware, however, it has 
not been developed in full on a model with a phase transition. 

In this paper we shall consider the model studied in Smith. (H) This 
model is simple enough to explicitly and (largely) analytically develop both 
the above viewpoints, yet complex enough to display a phase transition. 
The model which we study here is a variant of a much-studied model for 
the critical wetting transition (i.e., the transition at coexistance) (see, e.g., 
ref. 13). The model consists of N heights xi, where x; is a continuous 
variable taking values - 1 ~< xi ~< 1 (see Fig. 1). The endpoints of the string 
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i2 ~ J , s " + ~ 1  

1 l 
Fig. 1. A sample configuration of the continuous string, x I and x N are the ordinates of the 
first and last heights. We calculate the partition function for the case x~ = xu = 1. 

are fixed at xl = Xu= 1. The model can be viewed as a fluctuating string 
(or as a solid-on-solid model). The partition function is 

ZCw(Kc'ac'xl'xN)-=f-1 dx2"'f I dXN-lexp - j  1 KclxJ+l-xs l  

N 

• I-[ [l+a,.~(xs, 1)+ac6(Xs, - 1 ) ]  (1.1) 
j = l  

Various quantities are labelled with c (denoting continuous) to distinguish 
these from corresponding quantities in other cases which shall arise. The 
Boltzmann weight in (1.1) has a surface tension term which favors smooth 
configurations of the string over rough ones. There is also a contact energy 
(or adsorption potential) term which favors configurations where the string 
is pinned either to the top or to the bottom (in the solid-on-solid model 
interpretation this is a surface field). Usually one has only one surface to 
which the string can bind, in line with the wetting transition interpretation. 
In having two surfaces to which the string can be pinned we are following 
SmithJ 11~ The presence of a second surface is of no importance to our 
investigations here. We have included it with an eye to further investiga- 
tions in which competition can be arranged between the string favoring the 
top or the bottom. 

The partition function (1.l) does not have a phase transition as one 
takes the thermodynamic limit ( N ~  ~) .  However, if one first takes 
Kc --, o% then the resulting partition function does have a phase transition 
in the thermodynamic limit. As Kc is a surface tension parameter, it is far 
from clear as to why this limit should yield a phase transition. However, 
if one lets x~ = Kcxi and 

a= Kca~ (1.2) 
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then the configurations of the string are such that - K o  ~ x'i ~< Ko and one 
has unit surface tension. Thus, as Ko ~ 0% the string is allowed to fluctuate 
over an infinite channel. A phase transition did not arise in the original 
model because it was a one-dimensional model with short-range interac- 
tions (and thus phase transitions are forbidden via well-known theorems). 
This rescaling makes it clear that a phase transition arises in the Ko ~ oo 
limit, because in this limit the model becomes essentially two dimensional. 
In this interpretation Kc plays the role which L plays in Smith's paper./11/ 
However, Smith did not present the surface tension interpretation. 

In this paper we present a contour integral representation for (1.1) 
[see (4.3)] and its limit as Kc ~ oo [see (4.4) and (4.5)] as a function of 
a. This representation is based on the use of a Green's function. Through 
standard techniques the partition function can be written in terms of an 
( N -  1)-fold product of a transfer matrix T. The Green's function of T is 
defined as 

G = ( z - T )  -1 (1.3) 

where z is a complex variable. One can then readily show that 

T N I(XI,XN)=2@ii~cZN-1G(xI,XN)dZ (1.4) 

where we supress the coupling dependence. The integral is taken over 
a contour C which goes anticlockwise around all the eigenvalues of T. 
Equation (1.4) is readily derived using the eigenfunction expansion of the 
Green's function 

G(x1, XN)= E q~(X1)~)~(XN) (1.5) 

where r and 2~ are, respectively, the eth eigenvector and corresponding 
eigenvalue of T. In this derivation, one first assumes that all the couplings 
are real and that the transfer matrix has been chosen to be symmetric. 
Then eigenvalues are real and the eigenvectors can be chosen real and the 
derivation follows. Having established (1.4) and then having obtained G, 
one can then define the partition function for complex couplings via 
analytic continuation. 

There are thus two steps in the procedure: (i) evaluating the Green's 
function and (ii) evaluating the resulting contour integral. This approach 
was originally chosen to avoid the eigenvalue summations in the evaluation 
of the finite-size scaled partition function. It turned out that this approach 
was also useful for the study of the finite-size partition function. 
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In Section 2 we derive a somewhat more general version of (1.1) from 
a discrete version of the model. In Section 3 we evaluate the Green's 
function for the more general model. In Section 4 we obtain the contour 
integral representation for (1.1) and take the limit Kc ~ ~ .  For finite N we 
then derive a polynomial representation for the partition function and 
evaluate the zeros (for N <  100) in a of this polynomial for various values 
of N (see Fig. 2). This gives, of course, the Lee-Yang viewpoint of the 
phase transition. In Section 5 we perform an asymptotic evaluation of the 
contour integral, present the Stokes phenomenon viewpoint, and make 
contact with the Lee-Yang viewpoint. In Section 6 we use the asymptotic 
expansion to evaluate the large-N expression for the Lee-Yang zeros. In 
Section 7 we recover, and go somewhat beyond, the finite-size scaling limit 
results of Smith. (11) In Section 8 we conclude with some discussion. 

This paper arose as a continuation of the work of Smith and related 
papers and uses techniques learnt in previous study by one of the authors 
(C.P) on the calculation of quantum virial coefficients using the techniques 
of quantum scattering theory (see, e.g., refs. 14). 

2. M O D E L  V IA  A C O N T I N U U M  L IMIT  

One could apply the calculational procedure outlined above directly to 
the partition function (1.1). However, our experience has shown that this 
is somewhat awkward. More importantly, we attempted this procedure 
with a similar model with a magnetic field and found that our original 
continuum model was somewhat ill defined. As a result we instead prefer 
to derive the partition function via a careful continuum limit of a discrete 
model. We present this derivation for a somewhat more general model than 
that considered by Smith. We do this both because the extra effort involved 
is small and with an eye to possible future investigations. 

We begin with a discrete string whose configuration is given by N 
heights {nl, n2,..., FIN}, where ni~(-L,. . . ,  L) and L is some fixed integer. 
The energy of the configuration is given by 

flE{Ka, ta, ba, hd',FI1, n2,..., FIN} 

N 1 

= Z KdlnJ+,-FIil 
j - - 1  

N N 

- ~ [2ta6(ni, L)+2ba6(FIi , -L)]+ Y' 2hanj (2.1) 
j = l  j - 1  

where the d label, denoting discrete, is to distinguish this model from its 
continuum limit. 6(a, b) is the usual Kronecker delta. The first term favors 
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smooth configurations over rough ones. The second term gives an extra 
weight to those configurations in which the string is adsorbed to the top or 
the bottom. The third term is a symmetry-breaking (magnetic field) term. 

The partition function for this model is 

ZaN(L, K d, t d, bd ,  hd;  I'll, n N )  

L L L 
= E E "'" E ePE{Ka'td'bu'ha;na'n2 ...... N} (2.2) 

n2 = - - L  n 3 =  L nN_l= L 

It is essential in order for our methods to work to keep the boundary 
conditions on the string, i.e., nl,nu, fixed. They may nonetheless take 
arbitrary values. 

Using standard techniques, (2) we write the partition function in terms 
of a transfer matrix 

d 
Z N ( L ,  K d ,  td, bd,  hal; gll,  n N )  

= e -hd(nl + nN)eta[f(nl' L) + 6(nN, L ) ]  

x e ~ -L)+~(,u.-r)1TN(L ' Kd, ta, ba, ha; nl, nN) (2.3) 

where Ta is the (2L + 1) x (2L + 1) transfer matrix 

Ta(L, Ka, ta, ba, ha; nj, nj+ 1) 
' =  C Kdln)+l--nj[ hd(nj+l+nj) 

xetd[b(nj+l,L)+f(n),L)]+bdEf(nj+t, L)+6(nj, L ) ]  (2.4) 

We obtain boundary terms in (2.3) because we have chosen to work with 
a symmetric transfer matrix. 

The Green's function satisfies 

L 

zdGd(nl, nN)-- ~ Td(na, ng) Ga(nk, nN) -= 6(nl, nN) (2.5) 
n k = --L 

The most convenient way to perform the continuum limit is via the equa- 
tion defining the Green's function. We thus consider the continuum limit of 
(2.5). Of course once this is done one can apply the scalings [see (2.11) 
below] directly to the discrete partition function and take the continuum 
limit for a more direct view of the continuum model. (1.1) can of course be 
derived in this way. 

In deriving (1.4) it is convenient to work with a symmetric transfer 
matrix. Having obtained (1.4), a symmetric transfer matrix is no longer 
required. In fact, retaining a symmetric transfer matrix is quite incon- 
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venient in the continuum limit because the Kronecker deltas in the transfer 
matrix are quite awkward to handle. These Kronecker deltas can be 
removed by performing a similarity transformation 

G d ( n l ,  Flu) ~- e -hanletd6(nl'L)+bd6(m' -C)G a(nl, FiN) 

x eha"Ne ta~(,u, r ) -  ba6 (nN ,  - -  L )  (2.6) 

Using the identity 

e a~(nk'L) = 1 + (e a -  1) 6(nk, L) 

as well as defining 

(2.7) 

td = e z'~ -- l, "b d = e 2ha - -  1 (2.8) 

we find that (2.5) becomes 

L 

Z d a d (  n l ,  n N ) -  2 e--Kd]nl--nk[--2hdnkad(nk, nN  ) 
n k ~ --L 

_ 7ae-K~lnj L1-2h~L~a(L ' nN) -- bde -mtnl+Lj +2h~LGd(--L, nN) 

= 6(n~, nu) (2.9) 

One now has 

ZdN(L, Kd, ta, bd, hd; nl, Flu) 

e - 2hdnle2tdg(nl" L) + 2bdf(nl, L) 

1 
~c N-1Ga(L, Ka, td, bd, ha;nl nu) (2.10) x ~ dz,tzd 

Note that the n I +~nN symmetry in the partition function is no longer 
manifest. 

We next perform some scalings. Let 

Kc = KaL, hc = haL, nl = x l L ,  nU=XNL, nk = yL  

2 
LZGd(nlc, n u ) = G c ( y ,  xN), 7d=t~L, ~a=bcL,  Za=;;;z , .L  

lx c 

(2.11) 

The subscripts c now denote the couplings for the continuum model. The 
extra factor in the za scaling has nothing to do with the continuum limit, 
but is for later convenience. These scalings are uniquely determined by the 
requirement that they lead to a nontrivial continuum limit for (2.9). 



58 Pisani and Smith 

One can now take the continuum limit, L ~ oe. In this limit we use the 
identification for the sole remaining Kronecker delta 

lim L3(xa L, XNL ) = O(X 1 - -  X N )  (2.12) 
L---~ ov 

where the right-hand side is a Dirac delta function. This identification 
seems natural, as 

L 1 

1 = -~1 ~k =~-L L6(xkL, xNL)=f_  1 ~(y--XN) dy (2.13) 

Identifying the continuum partition function Z% via 

Z~N(K~, t~, b~, hc; xl, XN) 

1 
~-=SZN ~L, ~-,  ~ log(1 

1 
+ t~L), ~ log(1 h~ XNL) +b~L) ,~ ;x lL ,  

(2.14) 

and finally taking L--* oe in (2.9) and (2.10), one obtains the partition 
function for the continuum string model, 

Z~N(Kc, tc, be, h~; xl, XN) 

2 )  N h~x 1 
= ~ e-  l__~2xi C zcN 1G~(Kc, t~,b~,h~;xl,xu)dz~ (2.15) 

where Gc satisfies the 

f l e - Kclx~ - yl - dy 
--1 

2zc + bce-KcCxt+l)+2hcGc(- 1, XN) -----~ Gc(xl 

inhomogenous integral equation 

2&YGc(y, XN) 2i- tce -KcO - x ~  2hcGc(1, XN) 

, XN) = - - ( ~ ( X  1 - -  XN) 

(2.16) 

This derivation has been formal. In order to perform a more satisfac- 
tory derivation, one could try to make the above argument more rigorous. 
A more satisfactory procedure would be to obtain the discrete partition 
function directly and take the continuum limit for this expression. We have 
been able to do this in the case td = bd, ha = 0. We found that the resulting 
partition function for the continuum model was equal to that obtained by 
solving the continuum integral equation derived above only if xl or 
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XN r +1, __ (1 -- 1/L), or + (1 --2/L). Viewing Z~v as a function of (xl, NN), 
we thus find a boundary layer around the edges of the domain 
{(x~, XN): --1 <~ XI <~ 1, --1 <~ XN ~< 1 }. Because of this we shall restrict our 
considerations to {(x~, XN): -- 1 < Xl < 1, -- 1 < XN < 1 }. It will transpire 
that the partition function obtained is well defined as x~, X N ~  +1. We 
shall thus define the partition function on the boundaries of the boundary 
configuration space via this limit. 

3. T H E  G R E E N ' S  F U N C T I O N  

The integral equation (2.16) can be readily converted to the following 
boundary value problem: 

c32G~ ( 1 h x \ - - - - e - - e i  I \1 zc : Go(x1, xN) 

Kc ~826(x l - -XN)  __XN)] K?a(Xl 

K~ / 82 2" 
-- ~Zc ~X2N--Kc)  (~(XI--XN) (3.]) 

where the boundary conditions are 

8G~ ( l' x u ) =  K~ ( K ~ t ~ e - h ~ -  l ) Gc( l' 1 \ Z~ (3.2a) 

8x 1 ( -  1, XN) = Kc 1 -- e hc G o ( -  1, XN) (3.2b) 

To obtain (3.1), one divides the integration range in (2.16) into ~ 1  + S~,, 
differentiates twice with respect to x~, and uses (2.16) in the resulting 
expression. To obtain the first (second) boundary condition one differen- 
tiates (2.16) and adds (subtracts) to (from) it K~ x (2.16). One then takes 
x~ ~ ( - ) 1  in the resulting expression. The delta functions that appear in 
the boundary conditions do not contribute, since we are only considering 
- 1 < x~, XN < 1 according to the strategy for handling the boundary layer 
outlined in the previous section. 

Here we note an advantage of the Green's function method. The eigen- 
value problem for the transfer matrix would have been identical to the 
above boundary value problem except that the inhomogenity in (3.1) would 
be absent. The eigenfunction series for the partition function [obtained by 
substituting (1.5) into (1.4) and evaluating the contour integral by 
residues] requires normalized eigenfunctions. The Green's function evalua- 
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tion, which is only marginally more complicated than the eigenvalue 
problem, allows one to avoid calculating normalization integrals. 

If one defines a new function G~ as 

K c (  ~ 2) 
Gc(XI,XN)=~Z c ~X2N--Kc Gc(XI,XN) (3.3) 

then the boundary value problem for Gc becomes a special case of the 
general boundary value problem for the Sturm-Liouville Green's function 
on [a, b], 

-~x p ( x )  ~ + q2(x) u(x)  = 6 ( x -  y)  (3.4) 

- 7au = 0 (3.5a) 
x=a 

--~b u = 0  (3.5b) 
x=b 

whose solution, obtained by standard methods (see, e.g., ref. 7), is 

1 ~ u < ( y ) u > ( x )  y < x < b  
u(x, y ) = p ( y )  W{u i (x ) ,  u2(X)}y (F < - F  >) [u>(y)u<(x)  a < x <  y 

where 

(3.6) 

u < (x)  = u l (x )  - F<u2(x)  

U > ( X )  = U l ( X  ) - -  F>u2(x) 

F < = u ' l (a) - '~aul (a)  (3.7) 
U'z(a) - 7a u2(a) 

F> = u'~(b ) - 7bUl( b ) 
U'z(b ) - 3)bu2(b ) 

u2(x) are linearly independent solutions of the and where Ul(X ) and 
homogeneous differential equation. 

Once Gc is obtained, Gc is readily obtained from (3.3) by using the fact 
that Gc also satisfies the differential equation as a function of XN. In fact, 
the differential operator in (3.3) is equivalent to multiplication by a simple 
factor. Some simple algebraic manipulation then gives us the general 
solution for the partition function. 

Z~N(Kc, t , ,  be, hc; X1, XN) 

= --4 ( 2 )  N-3 e -hc'xl+xN) ~ ~,~ dz c zN-3Gc(Kc,  t~, b~, h~; x l ,  xN) 
\ KcJ 2hi 

(3.8) 
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where 

G~(Xl, xu)= 
1 fu l (x l )  ul(x~)  F < F  > 

W{Ul(X), b/2(X) } ~ " ~ " - ~  -'~F< _ r  < u2(x,)u2(Xu) 

ul(xl) Uz(XN) + uz(xl) Ul(XN) F < + F > 

2 F< - F > 

..~ Ul(X1) b/2(XN)- ~/~/2(XI) b/I(XN)} 
(3.9) 

where the upper sign is for xt > XN and the lower sign is for XN > XX [for our 
purposes this form of the Green's function is clearer that the usual form 
(3.6)]. The general solution displays the following properties: (i) x~ ~ XN 
symmetry is once again manifest; (ii) u~ ~ u2 symmetry (i.e., labeling of the 
linearly independent solutions); and (iii) u~ ~ #u~ symmetry (i.e., the result 
is independent of the normalization chosen for the linearly independent 
solutions). 

One can solve (3.1) subject to (3.2) in terms of Bessel functions leaving 
Z~v in the form of a contour integral. The analysis of the resulting contour 
integral is quite difficult. In this paper we shall limit ourselves to Smith's 
model, which involves the much simpler case h~ = 0. The h~ # 0 case is the 
subject of current investigations. 

4. F INITE-SIZE PARTIT ION F U N C T I O N  A N D  LEE-YANG 
P O L Y N O M I A L S  

When hc=O the homogeneous analog of (3.1) is readily solvable. 
We choose, as linearly independent solutions, u l ( x ) = c o s h q x  and 
u2(x)=sinhqx ,  where q = K c ( 1 - 1 / z ~ / 2 .  The principal branch of the 
square root function is taken (i.e., x / z  = [z[me i~ where z =  [z[ e i~ with 
- n  < arg z ~< ~). Using the general formula (3.9), we find that 

Z~u(Kc, tc,bc,O;xl,  xN)=2  \ K  J ~i~i~ dzz  - + D  

where 

A = {q2(7_ 1 -~1) cosh 2q + ( q 2  Y-1~1) q sinh 2q} 

A = (q2 + )~-lYl) cosh q(xl + xu )  

B=q( Y l  +7-1 )  sinh q(xl + XN) 

C = cosh q(xl - x~v) { (q ~ - y ~ y _ ~) cosh 2q + q(~ _ ~ - V ~) sinh 2q } 

sinh q(xl - Xw) 
D=-T- 

q 

(4.1) 

(4.2) 
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The integrand, despite the appearance of the square roots, is manifestly 
meromorphic, as required by (1.5). This would not have been so obvious 
had we used Ul(X)=e qx and u2(x)=e -qx. While we can, in principle, 
consider the case of different couplings to the top and the bottom, as well 
as vary the (fixed) endpoints of the string, we shall now restrict ourselves 
to Smith's case, i.e., be= tc=ac, Xl =XN= 1. The more general case is the 
subject of current investigations. 

In Smith's case the partition function simplifies to 

Z~(K~, ar ac, O; 1, 1) 

/ 2 ~  N - 2 1  zN_ (q+]~)e2Kcq-}-(q--~)e -2Kcq 
= 2 \ - ~ 1  2~i~cdZ 3(q+y)2e2K, q_(q_~,)2e_2Kcq (4.3) 

where q = ( 1 -  1/z) m, y = 1 -  a/z, and a =  at~a; tit =Kcac. As we discussed 
in the introduction, the model, as it stands, does not display a phase trans- 
ition. One can now see why from a mathematical point of view. The 
integrand above is meromorphic and thus the contour integral can be done 
as a sum of poles. The positions of the poles, in particular the position of 
the largest pole (which dominates in the thermodynamic limit in the usual 
way), are analytic functions of the coupling a. However, when one takes 
Kc-~ oe one obtains a much simpler object (it is here and in subsequent 
manipulations where the contour integral representation is much more 
flexible than the eigenfunction representation). We define the partition 
function in this limit as 

ZN(a)= lira KN-2Z~N(Kc, ac, ac, O; 1, 1 )=2N- l fN(a  ) (4.4) 
Kc~cO 

Then 
1 

fu(a)  - 27ti c dz z N-3 (1 - 1/2) 1/2 + 1 - a/z (4.5) 

It is clear that the eigenvalue spectrum, being essentially that of a 
Schr6dinger operator on an unbounded domain, condenses to form a Cut 
together with, for large coupling, a bound state. As the (real) coupling a 
decreases past the critical value, the bound state "sticks" to the leading 
edge of the continuum. The nonanalytic behavior of the leading eigenvalue 
is the mechanism of the phase transition. We will have more to say about 
this mechanism in Section 5. 

One also has a polynomial representation 

N--2 
fN(a) Z N , = b, a (4.6) 

n=0 
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where 

bN = " -  2 N -  n -- 3 n + 1 (4.7) 
N 2N- -~  i- 3 

Equations (4.6) and (4.7) are derived as follows: using the identity for 
~ N y n n=O , one can derive 

1 _ 1 { ~ 1  a n } 

( l  -- 1/Z)1/2+ 1--a/z ( 1 - -  1/z)~/2+ 1 . o z"[ (1  -- 1/z)m+ 1] n 

a M 1 

+ zM[(1 - 1/z) m + 1] a~ (1 - 1/z)1/2+ 1 -a /z  (4.8) 

Substitute this identity into the integrand of (4.5) and then choose a cir- 
cular contour of radius R. The last term of (4.8) gives a contribution to the 
integrand of (4.5) which behaves as z N-M-3 as z ~ oo. Choose the radius 
R so that the contour is in the region where the Laurent expansion of this 
contribution converges. Then, if M>~N-1, evaluation of the contour 
integral gives zero, thus yielding that the partition function is a polynomial 
in a. One also has that 

_ ~ i j c d z z N - n -  [(l_l/z)~/2 + l],+ 1 (4.9) 

This integral can be evaluated in the same manner as the remainder term, 
except that now the Laurent expansion of the integrand has a 1/z term, 
thus yielding a nonzero result. To obtain the Laurent expansion we use the 
result [see ref. 15, 2.8(6), p. 10l]  

I i + ( l - ! ) l / 2 ] - n - l = ( ~ ) n + l F ( ( ; - } - ~ ) ,  ( ; + 1 ) ; / 7 + 2 ; ~ )  (4.10) 

where F is Gauss' hypergeometric function. The standard power series 
representation for this function yields, after some simplification, (4.7). 

A polynomial representation for the finite-size partition function is of 
course the classic Lee-Yang description. It provides a wonderfully intuitive 
way of describing how the phase transition can arise. However, for large N 
it is not a good representation for the purposes of calculating the zeros. We 
have found that it is possible to evaluate the zeros of the polynomial 
numerically up to N ~  100 using lXlSolve in Mathematica/16) In fact we 
were pleasantly surprised that we were able to go this far with relative ease. 
The zeros are shown in Fig. 2. To evaluate the zeros for higher N, one must 
use a more convenient representation of thefu(a). In fact, it is convienient 
to use the integral representation (4.5) directly. This is done in Section 5. 

822/72/1-2-5 
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Ira(a) 0 

Fig. 2. 

-2 

-3 -2 1 0 1 2 3 
Re(a) 

Features of the partition function (1.1) as Kc~ oo, as a function of the complex 
variable a = Kcac. The points are Lee-Yang zeros for various values of N. 

In closing this section, we remark that there are in fact very many 
representations which can be derived from (4.5). By rationalizing the 
denominator of the integrand and evaluating a pole term (when present; 
see Section 5), one can show that 

(~)N-l(2a--1)fN(a) 
(! )( a 2 ) N - I  1 ~  (1--1/Z) 1/2 

= --  1 ~ "-}- ~ dz  z N -  1 z -- aZ/(2a - 1 ) 

1 ~ -N+  1;~---~ (4.11) 

Once again the contour integral is evaluated via Laurent expansion of the 
integrand. One obtains a finite sum, corresponding to the truncated 
binomial series which can be expressed in terms of a hypergeometric 
function [see ref. 15, 2.8(8), p. 101]. Using the myriad transformations of 
the hypergeometric function, one can derive many, many different represen- 
tations. One can also derive the representation 

fN(a)= -- ~1 \~-1.]( a 2 ,iN-1 N~2n = 1 ( ~ _ ) n  B(n+ a 21/2' 3/2, + 21 \2~----1]( a 2 ~N-2 

(4.12) 
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where B(a, b) is the beta function, by noting that fu(a) satisfies a linear 
first-order inhomogeneous difference equation in N and solving this 
equation using standard techniques (see ref. 7, p. 39). It is not immediately 
clear whether any of these representations have any special utility, either 
conceptually or numerically. While it may be possible that there are indeed 
useful representations hidden among the large collection derivable from 
(4.11), we choose to take a more direct approach, which we now describe. 

5. T H E R M O D Y N A M I C  L IMIT  A N D  STOKES 
P H E N O M E N O N  V I E W P O I N T  

In order to observe the phase transition as arising from a Stokes 
phenomenon and to obtain the Lee-Yang zeros for N >  100, we now 
consider the asymptotic evaluation of the partition function as N ~ 0% i.e., 
the thermodynamic limit. In the contour integral representation 

2~i ~c dz zN- t (1--1/z)I/2 -- (1-- a/z) ) 

the analytic structure of the integrand is clear. There is a pole at 
z = a2/(2a - 1) and a branch cut from 0 to 1. Because of the z N- 1 factor, 
it is clear that as N ~  o% the part of the integrand near z = ! will dominate 
asymptotically. Thus the asymptotic expansion can be done by collapsing 
the contour onto the cut and evaluating the resulting (ordinary) integral 
via Watson's lemma (though this is not the approach we will be taking). 
The important point is the contribution of the pole. The numerator of the 
fraction in the integrand of (5.1) evaluated at the pole is 

I ( ~ _ _ l ) Z ]  1/2 a - l =  2 a a  ' Re > 0  

+ a  t0, 
(5.2) 

where care needs to be taken in evaluating the square root. Re ( ( a -  1 )/a)= 0 
is a circle in the complex a plane of radius 1/2 centered at (1/2, 0). If the 
complex coupling a lies inside the circle, the asymptotic evaluation yields 
only the integral around the cut. If a lies outside the circle, then one picks 
up the pole term as well. Since the pole contribution is "born" on crossing 
this circle, we will refer to it as a "Stokes curve." We shall elaborate on this 
terminology later. It is convenient to perform a conformal transformation 
of the coupling plane, 

b = 1 - 1 / a  (5.3) 
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In the complex b plane the Stokes curve becomes a Stokes line, Re(b)= 0. 
It is also convenient to change the variable of integration to w = 1 -  1/z. 
This maps the cut onto the usual square root branch cut. One obtains 

a2S,(a)=l_~.f dw . v / ~ -  1 + a(1 - w) 
zTtt c (1 Z~4I)N W - - b  2 (5.4) 

After collapsing the contour onto the cut, one obtains 

2bO(Re(b)) Jr 1 ~ dt 
a2fN(a)= ( l - b 2 )  N ~J0 (l+t)Nt+b 2 (5.5) 

where O(x) is the usual Heaviside function. One can evaluate the integral 
in terms of the hypergeometric function [see ref. 15, 2.12(5), p. 115] to 
obtain another representation, no doubt related to Eq. (4.11). 

By setting t=x/N, the N ~  ~ limit of (5.5) becomes 

2b 1 1 W 1 

a Z f N ( a ) = ~ [ l _ W ( _ b , f N ) ] [ l + O ( 1 ) ]  ' 

, Re(b) > 0 

Re(b) < 0 

(5.6) 

~ = b x/-N (5.7) 

and also take ~ oo. z = O ( 1 )  corresponds to a - 1  =O(1/Nm). As will 
become clearer in the Section 7, this is the scaling region (see also Fig. 2). 
The resulting double asymptotic expansion should thus be a good 
approximation for N large and for the complex coupling constant outside 
the scaling region. In the thermodynamic limit the scaling region shrinks. 
In order to have a uniform approximation to the partition function, one 
must not neglect this region. 

To obtain the double asymptotic expansion, we rewrite (5.5) as 

a2fu(a) O(Re(b)) 1 
2b - ( 1 -b2 )  u t--~I(N, v2) (5.8) 

z 2 where W(z)= w/-~ze erfc(z). This is an asymptotic expansion which is 
uniformly valid in the coupling (away from the Stokes curve). To proceed 
further analytically (in particular with regard to the calculation of 
asymptotic expressions for the Lee-Yang zeros in the next section), we 
define 
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where 

I(N, ~2)-2r c 0 dx x + r2 (5.9) 

We approach the double asymptotic expansion of (5.8) by first evaluating 
the asymptotic expansion in r z with N fixed. This is easily done by expand- 
ing 1/(x+ r 2) using the geometric series and then doing the x integrals 
using 6.2.1 of ref. 17 to obtain 

where 

c~(N) [1 ~ (-1~ nF(n+3/2) 
I(N, ~2) = ~---~ + fl(N,n)] .=, TS/  

co(N, n )  = N "  + 3/2 F(N- n - 3/2)  
F(N) 

~(N, n) 
fl(N, n ) = -  

~(N, O) 

(5.1o) 

(5.11) 

To obtain the double asymptotic expansion, we then substitute the 
asymptotic expansions in N for ~(N) and fl(N, n), 

1 5 3 8 5  ( 1 )  
~(N) = 1 + 8 - - ~ + ~  + 0 ~ i  

n(4+n)  n(47+72n+28.a+3n 3) 0 ( 1 )  
fl(N, n )=  1 Jr 2 ~  t- 24N2 t- ~5 

(5.12) 

Before using the above to describe the phase transition from the 
Stokes phenomenon viewpoint, let us first make contact with the Lee-Yang 
viewpoint. From (5.8) and (5.10) the free energy is readily calculated to be 

- f i f  = l im 1 In Z~v = f l n  2, 
N~oo N (In 2 -1n( l  - b 2 )  ' 

I1/(1 -b2)[ < 1 
(5.13) I1/(1 -b~)f > 1 

The curve [1/(1-b2)[ = 1 is the anti-Stokes curve (see Fig. 2). Again 
we shall explain the terminology below. Thus, the free energy has two 
analytic forms inside and outside the anti-Stokes curve. It is plausible from 
the N <  100 calculations of the Lee-Yang zeros in Section 4 that what we 
have called the anti-Stokes curve is the curve on which the Lee-Yang zeros 
condense in the thermodynamic limit. One can also see that in regions free 
of zeros the free energy is analytic. This is in line with standard theorems 
in Lee-Yang theory. (1) 
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Now onto the Stokes phenomenon interpretation. Looking at the form 
of the free energy, Eq. (5.13), one can say that the phase transition occurs 
due to the birth of the - ln (1  - b 2) term as one crosses the anti-Stokes line. 
Our calculation shows that the "birth" of this term is a little more com- 
plicated. It comes from the Stokes phenomenon in the asymptotic evalua- 
tion of the partition function. We found that the asymptotic form of the 
partition function had a different form inside and outside the Stokes curve. 
In particular, simplifying our result for the purposes of exposition, we 
found, outside the scaling region, the behavior 

26 - -  ( 1  - -  b2) N "~ 4 ,V/~ b 3 ~ - -  + O + O (5.14) 

where we have a pole contribution and an asymptotic series. In examining 
the N ~ oo behavior of (5.14) there are, as is typical in functions displaying 
the Stokes phenomenon, two important curves: the Stokes curve 
IRe(b) = 0] and the anti-Stokes curve [l 1/(1 - b2)l = 1]. The significance 
of the Stokes curve is that it is where the pole term first "appears." The 
important thing to note here is that at this point the pole term is subdomi- 
nant, i.e., exponentially small with respect to all the terms in the dominant 
asymptotic series. As such one can essentially neglect it. (In the recent work 
of Berry and others (9) the Stokes phenomenon has been studied in certain 
classes of function and it has been shown that the subdominant term grows 
smoothly out of the error term of the asymptotic expansion of the dominant 
series over a region about the Stokes line. A similar behavior is expected 
in our function.) The pole term remains subdominant until one reaches 
the anti-Stokes curve. At this point the pole term is of similar order as the 
series. Beyond the anti-Stokes curve the pole term is dominant and the 
series can essentially be neglected. This change in asymptotic behavior 
(N ~ oo) of a function as one changes a control parameter (b) is typical of 
the Stokes phenomenon and occurs in many special functions (where one 
looks at the [zl --* oo behavior as one changes arg z(8)). Thus, the origin of 
the form (5.13) in a Stokes phenomenon for the contour integral should be 
clear. The only thing that remains is to explain why the Lee-Yang zeros, 
in the limit N ~  oo fall on the anti-Stokes curve. From the previous 
discussion we have that 

2b U ~  ~ (5.15) 

i 4 ~ N3/Zb3, < I 
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Both functional forms do not have zeros. However, near the anti-Stokes 
curve (and on it in the N--* ov limit) the two terms of the asymptotic 
expansion are of the same order and thus can balance, generating zeros of 
the partition function. 

6. LEE-YANG ZEROS FOR LARGE N 

We now calculate asymptotic expressions for the Lee-Yang zeros from 
the double series (5.10). This series allows us to find those zeros for which 
r2 is large as N ~ oo. 

In order to evaluate the zeros, rewrite (5.8) as a sum of two exponen- 
tials e l+  e g = 2e (f+ g)/2 c o s [ ( f -  g)/2i]. (We assume, here and henceforth, 
that N is even. The N-odd case can be treated similarly.) Then perform 
(another) conformal transformation of the coupling plane, 

1 
- e i ~  , - r e  < Re(0) ~< ~, - o o  < I r a ( 0 ) <  oo (6.1) 

so that the zeros are given by the implicit equation 

i ,[:3 
0 -  0o = ~ l o g  I(N, z 2) (6.2) 

where Oo(n) = 2(n + 1/2) rt/N, n = 0, ___ 1, + 2  ..... The restrictions in (6.t) 
ensure that the transformation is 1-1. Looking at (6.2), one might be 
tempted to take 0o as a first approximation. The conditions on the real and 
imaginary parts of 0 in (6.1) constrain us to only take a finite number of 
solutions. Applying this condition to 0o gives N zeros. However, the 
polynomial representation tells us that there are in fact only N - 2  zeros. 
At this point reference to the qualitative information from the polynomial 
representation helps us to avoid a trap we might otherwise have fallen 
into. Why are there extra zeros? Well, we only expect that the asymptotic 
expansion will yield a good approximation outside the scaling region. 
We thus only expect some of the zeros it generates to be reliable. 

In fact, we find, somewhat miraculously (although this is in fact a 
common miracle; cf. zeros of Bessel functions, etc.) that upon calculating 
higher-order terms the asymptotic expansion generated provides a good 
approximation for all of the zeros. How can this be the case? Well, for 
large N the asymptotic series (5.10) is typical in that it is a sum of terms 
an ,~F(n) /z  2n. By forming an+ z/an, one can easily see that the terms in the 
asymptotic expansion decrease until n = ~2 and then increase. Stopping at 
the minimum terms yields an error which is exponentially small. (8"9) Thus 



70 Pisani and Smith 

one expects that the asymptotic representation will be good down to, say, 
~2 = 5 provided one takes sufficient terms. In Fig. 3 we plot the Lee-Yang 
zeros as a function of r(in this diagram the N ~  oo limit is the scaling limit; 
these zeros are calculated in the next section). It is reasonably clear from 
this plot that the smallest zero has a value of v2, which is large enough 
( ~ 7 )  for the asymptotic series to still be useful. Furthermore, for the 
extra zero the higher-order corrections to the asymptotic expansion have 
the effect of shifting Re(0) in the positive sense by a term O(1/N). In fact 
the zero is shifted outside the range -r~ < Re(0)~< rc and thus violates the 
single-valuedness condition on the conformal transformation. Let us now 
see all this in detail. 

Iterating (6.2) is quite tedious, as is trying to get the O(1/N) correc- 
tion out of the right hand side, grouping it with 0o, and then iterating. 
After a number of attempts, we settled on the following strategy to solve 
(6.2) asymptotically in N and T ~. There are aspects of this stategy which we 
still find unsatisfactory. However, we are in the fortunate position of having 
some exact results (from the solution of the Lee-Yang polynomial) with 
which to compare. As a result we are able to develop reasonable confidence 
in our strategy, its primary virtue being the ability to systematically 
generate higher-order terms in the double asymptotic expansion. This 
procedure has been automated using Mathematica. Define 6 by 

i 0-0o=~6 (6.3) 

Fig. 3. 

I r a ( T )  0 

-i0 

b r  i i 
a~ / 

S **~....,.,.'" .......................... .....%.. 

o + g ~ )  ) 

t 

N=I2  * 
N=22 + 
N=42 o 

".. N=62 • 
""%. N = 102 

'~ N = 202 �9 

I I 

5 25 30 

/ 
/ 

/ /  
......y" 
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N.~,. I I I 
10 15 20 

Re(r) 

The exact zeros  and the scaled partit ion function zeros in the complex  z (scaled 
coupl ing)  plane. N - *  oo is the scaling limit. T = b x / N ,  b = 1 - 1/a. 
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Then (6.2) can be written as 6 =f(v2,  N). We now Taylor e x p a n d f  about 
0o. As 0 -  0o is small as N ~  0% we expect that this expansion will 
converge quickly. Defining 

c , -  lviTdf('r2'N)at~ o=o0 + 1 

n>~2 i d 2 N  ) 

o_oo' 
where ~o = Z(0o) and d, = c,/cl, one obtains 

(6.4) 

f(Vo 2, N) 5+d262+d363+ . . .  (6.5) 
c1 

This series can be readily inverted to obtain 

6= g(31~ r2o] ) 
2al d o (6.6) 

where g(x)= x-d2x 2-  (2d~-d3)x3-{ - ... and we have separated out the 
log term. After some tedious, but straightforward algebra one can obtain 

- 1 5  3 15 45e -i~176 3 log[(16~z) 1/3 ~2] 

6=-~+2~Zo2-~ 4N% 2 16NT~ + 2 

9e-i~176 2 ] ((log "c~)2. '] ( I )  
+ 4~ 2 +0• ~4 j+O -~-5 (6.7) 

Table I. A Sample of the N = 1 0 2  Zeros and the Asymptotic Approximation 
to Them, to Various Orders 

n 0o,o 01, ~ 02,2 Exact 

0 0 .030799 0.031026+0.097408i 0.031038+0.098017i 0.03t038+0.098034i 
1 0 .092399 0.093079+0.097394i 0.093114+0.098003i 0.093114+0.098020i 
2 0 .154000 0.155132+0.097367i 0.155190+0.097974i 0.155191+0.097991i 
3 0 .215599 0.217185 +0.097325i 0.217266+0.097931i 0.217267 + 0.097949i 

45 2.802793 2.823402+0.071229i 2.826176+0.070759i 2.826358+0.070881i 
46 2.864393 2.885455+0.068301i 2.888671+0.067586i 2.888919+0.067740i 
47 2.925993 2.947508 + 0.064624i 2.951362 + 0.063530i 2.951730 + 0.063736i 
48 2.987593 3.009561 + 0.059690i 3.014436 + 0.057928i 3.015069 + 0.058212i 
49 3.049193 3~71613 + 0.052187i 3.078452 + 0.048897i 3.079947 + 0.049251i 
50 3.110793 3.133666 + 0.036036i 3.146158+0.025273i 3.079947 +0.049252i 
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Table II. 
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A Sample of the N=202  Zeros and the Asymptotic Approximation 
to  Them, t o  Various Orders 

0o,o G,= 02,2 Exact 

0 0.015552 0.015610 + 0.054261i 0.015611 + 0.054435i 0.015611 + 0.054438i 
1 0.046657 0.046831 + 0.054259i 0.046835 + 0.054433i 0.046835 + 0.054436i 
2 0.077762 0.078051 + 0.054256i 0.078059 + 0.054430i 0.078059 + 0.054432i 
3 0.108867 0.109271 + 0.054250i 0.109283 + 0.054424i 0.109283 + 0.054427i 

95 2.970516 2.981545 + 0.035993i 2.982925 + 0.035622i 2.983006 + 0.035682i 
96 3.001621 3.012765 + 0.034506i 3.014366 + 0.034017i 3.014479 + 0.034094i 
97 3.032726 3.043986 + 0.032643i 3.045907 + 0.031969i 3.046077 + 0.032073i 
98 3.063832 3.075205 + 0.030146i 3.077643 + 0.029144i 3.077941 + 0.029290i 
99 3.094935 3.106426 + 0.026354i 3.109858 + 0.024595i 3.110580 + 0.024779i 
100 3.126040 3.137647 + 0.018196i 3.143963 + 0.012695i 3.110580 + 0.024779i 

Having obtained the zeros via solution of the polynomial up to N =  102, 
we can now compare these (essentially exact) zeros with various orders of 
the asymptotic expansion. We shall denote by Oa, b the asymptotic expan- 
sion obtained where one neglects terms of order ((log 2 2 a ro)/~o) and ( l /N)  b. 
The comparison for N = 102 is made in Table I. (Note: In Fig. 2 the n = 0 
zero is the first zero in the lower half-plane near the negative real axis. n 
increases clockwise to the scaling region.) One obtains similar agreement 
for N = 62, 82. We thus expect the asymptotic formulas to provide similar 
agreement for N >  100. For  N >  100 we were unable to readily generate the 
roots of the polynomial equation. We believe the cause of this to be can- 
cellation error. Naturally we would still prefer to be able to calculate these 
zeros exactly. The contour integral representation provides an alternative. 
For  N >  100 one can obtain the exact zeros by evaluating (5.5) numerically 
and calculating the zeros using the secant method starting from 01,1 and 
02, 2 (using FindRoot in Mathematica). We verified this method by using 
it to reproduce the N =  102 zeros. The comparision of the asymptotic 
approximations and the exact results for N =  202 is done in Table II. In 
Tables I and II we can also see that the extra zeros in the lowest order 
approximation are artifacts (the "phantom" zeros in each case iterating 
to the last zero). 

7. FINITE-SIZE SCALING LIMIT 

The basic hypothesis of finite-size scaling, in the context of the model 
studied here, is that one can introduce a finite-sized scaling variable 

/ __ a er i t \  

N q { a - a u  -] as=  \ aCcn t ] (7.1) 
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for some exponent q, such that the limit 

c " crit  
ZS(as)= lira ZN(ac  [ l + a , N  q]) (7.2) 

c crit  
N ~ o O  Z N ( a  c ) 

exists independently of N. The renormalization group argument for this 
hypothesis suggests that this choice is unique and that if an incorrect 
choice is made, then the above limit will not exist or will be trivial. The 
finite-size scaling limit reveals universal features of critical phenonmena 
(see, e.g., refs. 18 and 10). 

Using (4.5), we can readily determine q and the scaled partition 
function. In order to obtain a nontrivial limit as N ~ oe, it is clear that one 
requires z = 1 + z j N ,  so that z u ---> e ~'. For the rest of the integrand to have 
a nontrivial limit, one must choose q = 1/2. This leads to 

(, eZs 
1 ~ dz,- ~- -  (7.3) 

Z ' ( a s ) = Z w / ~ i  c x /zs- -a~ 

= 1 +a , v / - s  (7.4) 

where w ( z ) = e  -Z2 e r f c ( - i z )  (see ref. 17, 7.1.3). This agrees with Eq. (3.18) 
of Smith. We can also make contact with the asymptotic expansion of the 
previous section by expressing (5.6) totally in terms of 7: and taking N ~ Go. 
One obtains 

a2fN(a) ~ O(Re(T)) e ~2 q 1 
2b 4 , , /~T 3 0(7:) (7.5) 

where O(z) is defined in terms of w(z) and has the asymptotic limit 

1.3 . . . . .  ( 2m+ 1) D ( r ) ~  
m = O  2.a ( _ _  2 7 : 2 ) m  (7.6) 

These two expressions for the scaling limit agree because limN ~ o~ 7: = as. 
We now calculate the zeros of the scaled partition function. As in the 

previous section, we can only progress analytically by solving for the zeros 
of the above equation as r ~ oe. Unlike the previous section, the calcula- 
tion is considerably simpler because we only have one variable in which to 
expand. Smith performed this calculation, but his technique only allowed 
him to calculate to low order. We now present a technique which is able 
systematically to generate higher-order terms. We restrict ourselves to 
Re(r) > 0, as the imaginary axis is a Stokes line and the zeros lie in this 
half-plane. Using an argument similar to that used in the previous section, 
one finds that the zeros are the solutions of 

7:2 = "c2(n) - 3 log 7: + log f2(-c) (7.7) 
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where %(n)=  [2(n + 1)rci- �89 log 16~] 1/2. This equation implies that �9 ~ ~o 
as v ~ or. One cannot solve this equation asymptotically by iteration because 
the right-hand side is not small as ~ ~ ~ .  One can overcome this problem 
by writing 

" r z+31og t=~ t* -~ '~ - - -Z  ) --~ (7.8) 

to transform (7.7) to 

3,og  3 9 ,og  2 
r - t o -  2T 4%t2+~--~%o~ ~ / ] - -  + 0  (7.9) 

where the positive square root is taken, ensuring that Re(t) > 0 asymptoti- 
cally. This equation can now be solved asymptotically by iteration to yield 

T : T  0 
31~ 9(1~ 91~ (13) 

2% 4% 3 4 ~  + O ~ (7.10) 

We show in Table III the first six zeros in the upper half-plane together 
with the predictions of the asymptotic formula to various orders of itera- 
tion. As in the previous section, the lowest order asymptotic expansion 
predicts an extra zero in the region of interest IRe(r)  > 0], whereas higher- 
order terms move this zero out of the right half-plane, thus rendering it 
a phantom zero (Smith concluded that this was a phantom zero when he 
was unable to find it numerically). Again as in the previous section, the 
asymptotic formula is able to reproduce all zeros to a good approximation. 
The exact zeros are obtained as in the previous section (though here 
Newton's method is used). In Fig. 3 we plot the zeros in the complex scaled 
coupling plane t. We also plot the exact zeros for various N in the same 
variable. One can thus see how the scaling limit is approached. Also in the 
above argument there is no guarantee that we have recovered all the 
scaling zeros (i. e., strictly speaking, we would need to check at small values 
of ~ where the asymptotic expansion is not valid). This plot makes it 
reasonably clear that we have indeed recovered all the scaling zeros. 

8. D ISCUSSION 

The Lee-Yang and Stokes phenomenon viewpoints can be seen to be 
quite complementary. They each have their own particular utility. The 
Lee-Yang picture provides a good representation of the partition function 
for relatively small N as well as giving the exact number of zeros. The con- 
tour integral representation provides a good representation for large N, but 
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generates "phantom" zeros if one is not careful. In the Lee-Yang picture it 
is clear why a polynomial representation exists (a hard-core potential 
provides a cutoff in the grand partition function). In our model it is not 
clear why a polynomial representation arises. In fact, had we not had the 
Lee-Yang picture, we probably would not have found the polynomial 
representation. 

The contour integral representation makes it very clear as to why the 
zeros form on curves in the coupling plane. This fact is something that the 
Lee-Yang picture cannot explain. Indeed they comment in the concluding 
remarks of their paper that they are surprised that the zeros of their 
polynomial should have such regular patterns. From the discussion at the 
end of Section 5 it is clear that the zeros lie on curves because they result 
from the asymptotic balance of two contributions, the bound state and 
the continuum. In fact with this viewpoint one can look at some of the 
numerical results in the literature with a different perspective. For example 
Pearson's ~3'~~ of the temperature zeros for the 3D Ising model 
clearly suggests four different regions of the complex plane in which the 
partition function has a different analytic form. This is clearly a much more 
complicated Stokes phenomenon, strongly suggesting that in the thermo- 
dynamic limit there are four contributions to the partition function. One 
can imagine that a meaningful phenomenology could be attempted. We 
should point out that although in many cases zeros seem to form on lines 
in the thermodynamic limit, there are some models where they form more 
complicated patterns, for example, the anisotropic Ising model, where they 
form in areas,(2~ and also hierarchical models, where they form self-similar 
patterns. ~21) It is clear that the mechanism for zero generation discussed 
above has no direct relevance to these examples. 

The Lee-Yang and Stokes phenomenon viewpoints only provide a 
characterization of a phase transition. That is, they describe the function- 
theoretic features present in the thermodynamic functions of systems 
exhibiting phase transitions. They do not give sufficient and necessary 
conditions on the Hamiltonian, the dimensionality, and the symmetry of 
the system for the presence of such features. In the model we have 
described, however, the mechanism by which the phase transition arises is 
quite clear. Examining this mechanism allows us to recast the question, 
"Why do phase transitions occur?" As we described in Section 1, the model 
investigated here is essentially two dimensional (N x Kc). The Green's func- 
tion for the finite system is meromorphic. As one of the dimensions goes to 
infinity (Kc), the Green's function becomes double-valued, the cut arising 

2 We are grateful to a referee and J.M. Luck for pointing out this example, and to 
P. J. Forrester for assistance in finding the references. 
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from the coalescence of eigenvalues. Furthermore, there is a bound state. 
When the coupling lies outside the Stokes circle, the bound state is on the 
"physical sheet" (i.e., the sheet on which the contour lies). If it lies inside 
the Stokes circle, the bound state is on the second ("unphysical") sheet. It 
is the motion of the bound state that causes the Stokes phenomenon and 
thus the phase transition. It is fairly natural that the eigenvalues should 
form a continuum in the Kc ~ oe limit. However, it is less clear as to why 
one state should split off from the continuum and remain discrete. It is this 
property which is the mechanism for the phase transition. Thus in the 
context of the model studied here the question, "Why is there a phase 
transition?," can be rephrased, "Why do bound states occur?" The usual, 
qualitiative, answer to both questions is that "cooperative" or "coherent" 
behavior occurs. In fact, within quantum scattering theory (see, e.g., ref. 19) 
there exist a number of bounds, calculable in terms of the potential, on the 
number of bound states, so that there is some understanding of how bound 
states occur. 

We would also like to point out that we expect that the mechanism 
outlined above is probably quite common. In ref. 2 (pp. 141,243) a sugges- 
tion of Kac is described in which a phase transition occurs if the largest 
eigenvalue is asymptotically degenerate below the critical temperature and 
strictly nondegenerate above the critical temperature. This viewpoint is 
another way of stating that the leading eigenvalue either joins the con- 
tinuum or splits off as a bound state according to the value of the coupling. 
Also, we state above that the Green's function becomes double-valued in 
the Kc ~ oe limit. This is not strictly true. In this limit the Green's function 
remains meromorphic, but varies rapidly in the vicinity of the cut. 
However, the double-valuedness remains if we undertake the following 
procedure. First consider a domain of the complex plane excluding a 
sufficiently large neighborhood of the eigenvalues. Then take Kc --, oe limit. 
Follow this with an analytic continuation. Under such a procedure the 
Green's function becomes double-valued. Also, the fact that there is only 
one bound state.in our model is a consequence of the use of zero-range 
potentials for the sticking. The zero-range potentials manifest themselves 
through mixed boundary  conditions (3.2). 

ACKNOWLEDGMENTS 

We gratefully acknowledge the constructive criticisms of a referee with 
regard to the presentation of our results. C.P. would like to thank Chris 
Howls for useful discussions with regard to the Stokes phenomenon. We 
acknowledge the support of the Australian Research Council. 



78 Pisani and Smith 

R E F E R E N C E S  

1. C. N. Yang and T. D. Lee, Phys. Rev. 87:404 (1952); T. D. Lee and C. N. Yang, Phys. Rev. 
87:410 (1952). 

2. C. J. Thompson, Mathematical Statistical Mechanics (Princeton University Press, 
Princeton, New Jersey, 1972), p. 85; G.E. Uhlenbeck and G.W. Ford, Lectures in 
Statistical Mechanics (American Mathematical Society, Providence, Rhode Island, 1963). 

3. R. B. Pearson, Phys. Rev. B 26:6285 (1982); B. Bonnier and Y. Leroyer, Phys. Rev. B 
44:9700 (1991); S. Katsura, Y. Abe, and M. Yamamoto, J. Phys. Soc. Jpn. 30:347 (1971). 

4. M. E. Fisher, in Lectures in Theoretical Physics, Vol. VII(c) (University of Colorado 
Press, Boulder, Colorado, 1965), p. 1. 

5. T. Asano, J. Phys. Soc. Jpn. 29:350 (1970); M. Suzuki and M. E. Fisher, J. Math. Phys. 
12:235 (1971). 

6. G. G. Stokes, Trans. Camb. Phil Soc. 9:379 (1847); 10:106 (1864) [Reprinted in Mathe- 
matical and Physical Papers by the Late Sir George Gabriel Stokes (Cambridge University 
Press, Cambridge, 1904), Vol. II, p. 329; Vol. IV, p. 77]. 

7. C. M. Bender and S.A. Orszag, Advanced Mathematical Methods for Scientists and 
Engineers (McGraw-Hill, New York, 1984). 

8. F. W. J. Olver, Asymptotics and Special Functions (Academic Press, London, 1974). 
9. M. V. Berry, Proc. R. Soc. A 422:7 (1989); PubL Math. lnst. Hautes Etudes Sci. 68:211 

(1989); F. W. J. Olver, SIAM J. Math. Anal 22:1460 (1991). 
10. C. Itzykson, J. B. Zuber, and R. B. Pearson, Nucl. Phys. B 220:415 (1983). 
11. E. R. Smith, Z Star. Phys. 60:529 (1990). 
12. M. L. Glasser, V. Privman, and L.S. Schulman, J. Star. Phys. 45:451 (1986); M.L. 

Glasser, V. Privman, and L. S. Schulman, Phys. Rev. B 35:1841 (1987). 
13. G. Forgacs, R. Lipowsky, and Th. M. Nieuwenhuizen, in Phase Transitions and Critical 

Phenomena, Vol. 14, Section4, C. Domb and J.L. Lebowitz, eds. (Academic Press, 
London, 1988). 

14. K. M. Watson, Phys. Rev. 103:489 (1956); B. J. Baumgartl, Z. Phys. 198:148 (1967); W. G. 
Gibson, Phys. Rev. A 6:2469 (1972). 

15. A. Erdeyli, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Higher Transcendental 
Functions, Vol. 1 (McGraw-Hill, New York, 1953). 

16. S. Wolfram, Mathematica: A System for Doing Mathematics by Computer, 2nd ed. 
(Addison-Wesley, Redwood City, California, 1991). 

17. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (National Bureau 
of Standards, Washington, D.C., 1968). 

18. M. E. Fisher and M.N. Barber, Phys. Rev. Lett. 28:1516 (1972). 
19. R. G. Newton, Scattering Theory of Waves and Particles, 2nd ed. (Springer-Verlag, 

New York, 1982). 
20. J. Stephenson and R. Couzens, Physica A 129:201 (1984); W. van Saarloos and 

D. A. Kurtze, J. Phys. A 17:1301 (1984). 
21. C. Itzykson and J. M. Luck, in Proceedings of the Brasov International Summer School 

1983 (Birkh~iuser, Boston, 1985). 


